Introduction of z chart statistics:-

In statistics, z chart are used in normal distribution to find the p value.

A normal distribution with mean μ and standard deviation σ can be converted into a standard normal distribution by performing change of scale and origin.

The formula that enables us to change from the x scale to the z – scale and versa is
` Z = (X-mu)/sigma`

 

 

Basic z chart statistics:-

 

In the following z chart statistics to explain the how to calculate the z value

Z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0

0.0000

0.0040

0.0080

0.0120

0.0160

0.0199

0.0239

0.0279

0.0319

0.0359

0.1

0.0398

0.0438

0.0478

0.0517

0.0557

0.0596

0.0636

0.0675

0.0714

0.0753

0.2

0.0793

0.0832

0.0871

0.0910

0.0948

0.0987

0.1026

0.1064

0.1103

0.1141

0.3

0.1179

0.1217

0.1255

0.1293

0.1331

0.1368

0.1406

0.1443

0.1480

0.1517

0.4

0.1554

0.1591

0.1628

0.1664

0.1700

0.1736

0.1772

0.1808

0.1844

0.1879

0.5

0.1915

0.1950

0.1985

0.2019

0.2054

0.2088

0.2123

0.2157

0.2190

0.2224

0.6

0.2257

0.2291

0.2324

0.2357

0.2389

0.2422

0.2454

0.2486

0.2517

0.2549

0.7

0.2580

0.2611

0.2642

0.2673

0.2704

0.2734

0.2764

0.2794

0.2823

0.2852

0.8

0.2881

0.2910

0.2939

0.2967

0.2995

0.3023

0.3051

0.3078

0.3106

0.3133

0.9

0.3159

0.3186

0.3212

0.3238

0.3264

0.3289

0.3315

0.3304

0.3365

0.3389

1.0

0.3413

0.3438

0.3461

0.3485

0.3508

0.3531

0.3554

0.3577

0.3599

0.3621

1.1

0.3643

0.3665

0.3686

0.3708

0.3729

0.3749

0.3770

0.3790

0.3810

0.3830

1.2

0.3849

0.3869

0.3888

0.3907

0.3925

0.3944

0.3962

0.3980

0.3997

0.4015

1.3

0.4032

0.4049

0.4066

0.4082

0.4099

0.4115

0.4131

0.4147

0.4162

0.4177

1.4

0.4192

0.4207

0.4222

0.4236

0.4251

0.4265

0.4279

0.4292

0.4306

0.4319

1.5

0.4332

0.4345

0.4357

0.4370

0.4382

0.4394

0.4406

0.4418

0.4429

0.4441

1.6

0.4452

0.4463

0.4474

0.4484

0.4495

0.4505

0.4515

0.4525

0.4535

0.4545

1.7

0.4554

0.4564

0.4573

0.4582

0.4591

0.4599

0.4608

0.4616

0.4625

0.4633

1.8

0.4641

0.4649

0.4656

0.4664

0.4671

0.4678

0.4686

0.4693

0.4699

0.4706

1.9

0.4713

0.4719

0.4726

0.4732

0.4738

0.4744

0.4750

0.4756

0.4761

0.4767

2.0

0.4772

0.4778

0.4783

0.4788

0.4793

0.4798

0.4803

0.4808

0.4812

0.4817

2.1

0.4821

0.4826

0.4830

0.4834

0.4838

0.4842

0.4846

0.4850

0.4854

0.4857

2.2

0.4861

0.4864

0.4868

0.4871

0.4875

0.4878

0.4881

0.4884

0.4887

0.4890

2.3

0.4893

0.4896

0.4898

0.4901

0.4904

0.4906

0.4909

0.4911

0.4913

0.4916

2.4

0.4918

0.4920

0.4922

0.4925

0.4927

0.4929

0.4931

0.4932

0.4934

0.4936

2.5

0.4938

0.4940

0.4941

0.4943

0.4945

0.4946

0.4948

0.4949

0.4951

0.4952

2.6

0.4953

0.4955

0.4956

0.4957

0.4959

0.4960

0.4961

0.4962

0.4963

0.4964

2.7

0.4965

0.4966

0.4967

0.4968

0.4969

0.4970

0.4971

0.4972

0.4973

0.4974

2.8

0.4974

0.4975

0.4976

0.4977

0.4977

0.4978

0.4979

0.4979

0.4980

0.4981

2.9

0.4981

0.4982

0.4982

0.4983

0.4984

0.4984

0.4985

0.4985

0.4986

0.4986

3.0

0.4987

0.4987

0.4987

0.4988

0.4988

0.4989

0.4989

0.4989

0.4990

0.4990

3.1

0.4990

0.4991

0.4991

0.4991

0.4992

0.4992

0.4992

0.4992

0.4993

0.4993

3.2

0.4993

0.4993

0.4994

0.4994

0.4994

0.4994

0.4994

0.4995

0.4995

0.4995

3.3

0.4995

0.4995

0.4995

0.4996

0.4996

0.4996

0.4996

0.4996

0.4996

0.4997

3.4

0.4997

0.4997

0.4997

0.4997

0.4997

0.4997

0.4997

0.4997

0.4997

0.4998

3.5

0.4998

0.4998

0.4998

0.4998

0.4998

0.4998

0.4998

0.4998

0.4998

0.4998

3.6

0.4998

0.4998

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

3.7

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

3.8

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

0.4999

 

For example,

    P(0 ≤ Z <2.5) = P(0 < Z < ∞) − P(0 ≤ Z <2.5)

                        = 0.5 −0.4938
                        = 0.0062

Using z-chart to calculate the z value.

Select the first column value 2.5 then choose the right side top of the column value 0.00 in the same direction we got an answer as 0.0062.

 

Example problems for z chart statistics:-

 

Problem 1:-

Calculate the standard deviation Z chart value range P(0 Z <1.7)

Solution:

   P(0 ≤ Z <1.7) = P(Z < 1.7)

                       = P(−∞ < Z< 0) + P(0 ≤ Z < 1.7)

                       = 0.5 + 0.4554

                       = 0.9554

Using z-chart to calculate the z value.

Select the first column value 1.7 then choose the right side top of the column value 0.00 in the same direction we got an answer as 0.9554


Problem 2:-

Calculate the standard deviation Z table value range P(-1.4 Z <2.6)

Solution:

    P
(-1.4 ≤ Z <2.6) = P(− 1.4 < Z < 0) + P(0 < Z < 2.6)

                           = P(0 ≤ Z < 1.4) + P(0≤ Z ≤ 2.6) [by symmetry]

                           = 0.4192+ 0.4953

                           = 0.9145

 

Using z-chart to calculate the z value.

Select the first column value 1.4 then choose the right side top of the column value 0.00 in the same direction we got an answer as 0.4192

Select the first column value 2.6 then choose the right side top of the column value 0.00 in the same direction we got an answer as 0.4953.