Introduction for how to get row number:

The question "how to get row number" represents the row number calculation for the students. The row number start from the top of the data list or in the matrix representation. The matrix order is in the form of rows and columns. When it comes down then the row number value increases. The  data analysis process some times have same rows on behalf of the values. In this article we are going to discuss about the row number calculation for the students in detail.

 

Please express your views of this topic Simplify Square Root by commenting on blog.

 

Explanation for "how to get row number"

 

  • Review for how to get row number on the  the matrix Z =  `|[5,5,5],[12,12,12],[5,5,5]|` Find the determinant in the matrix.

Solution:

In the matrix Z ,the first row and third row are equal.

Z =  `|[5,5,5],[12,12,12],[5,5,5]|`     for 3 x 3 matrix as  `|[s_1,x_1 ,c_1 ],[s_2 ,x_2 ,c_2 ],[s_3 ,x_3 ,c_3 ]| `           

 Z = s1(x2 c3 − x3 c2) − x1(s2 c3 − s3 c2) + c1 (s2x3 − s3 x2)

   = s1x2c3 − s1x3c2 − s2x1c3 + s3x1c2 + s2x3c1 − s3x2c1

Z  =  5(60 - 60) - 5(60 - 60) + 5(60 - 60)

Z  =  5(0) - 5(0) + 5(0)

Z  =  0 - 0 + 0       

Z =  0 is the determinant value.

  • Review for how to get row number on the  the matrix Z =  `|[12,12,12],[5,5,5],[5,5,5]|` Find the determinant in the matrix.

Solution:

In the matrix Z ,the second row and third row are equal.

Z =   `|[12,12,12],[5,5,5],[5,5,5]|`     for 3 x 3 matrix as  `|[s_1,x_1 ,c_1 ],[s_2 ,x_2 ,c_2 ],[s_3 ,x_3 ,c_3 ]| `           

 Z = s1(x2 c3 − x3 c2) − x1(s2 c3 − s3 c2) + c1 (s2x3 − s3 x2)

   = s1x2c3 − s1x3c2 − s2x1c3 + s3x1c2 + s2x3c1 − s3x2c1

Z  =  12(25 - 25) - 12(25 - 25) + 12(25 - 25)

Z  =  12(0) - 12(0) + 12(0)

Z  =  0 - 0 + 0       

Z =  0 is the determinant value.

 

More explanation for "how to get row number"

 

  • Review for how to get row number  on the addtiion operation of the two matrices   `[[15,15,15],[15,15,15],[15,15,15]]`   `+``[[157,157,157],[157,157,157],[157,157,157]]`  

 

Between, if you have problem on these topics Zero Divisor, please browse expert math related websites for more help on cbse 10 years question papers.

 

Solution: 

The matrix P contain same values in more rows.

The matrix W also contain same values in more rows.

P =   `[[P_11,P_12 ,P_13 ],[P_21 ,P_22 ,P_23 ],[P_31 ,P_32 ,P_33 ]]`    and  W =  `[[W_11,W_12 ,W_13 ],[W_21 ,W_22 ,W_23 ],[W_31 ,W_32 ,W_33 ]]`   

 `P + W`    is given by  `[[P_11 + W_11,P_12 + W_12,P_13 + W_13],[P_21 + W_21,P_22 + W_22,P_23 + W_23],[P_31 + W_31,P_32 + W_32,P_33 + W_33]]`

P + W =   `[[P_11 + W_11,P_12 + W_12,P_13 + W_13],[P_21 + W_21,P_22 + W_22,P_23 + W_23],[P_31 + W_31,P_32 + W_32,P_33 + W_33]]`     

P + W  =  `[[15+157,15+157,15+157],[15+157,15+157,15+157],[15+157,15+157,15+157]]`     

P + W  =  `[[172,172,172],[172,172,172],[172,172,172]]`       is the needed answer in the order 3 x 3.