Introduction to algebra and function review:

   In this article we are going to review the algebraic function with suitable examples. Algebraic function deals with unknown variable from the given expression with the help of known values. The algebraic expression contains variables. constants and arithmetic operators.Sample algebraic functions s(y) = 6y2+12y + 24. Find the value of  s(5). By substitute y=5 we will get the s(5) value.

 

Sample algebraic functions:

  • (s + r)(y) = s(y)+ r(y)
  • (s – r)(y) = s(y) – r(y)
  • (s .r)(y) = s(y) . r(y)
  • `(s/r)` (y) = `(s(y))/(r(y))`

 

Review on algebraic function problems:

 

Problem 1: f(x) = x2 +2x +24 find the f(7).

Solution :

Given function of f(x) Plug x value is 7

f(x) = x2 +2x +24 find the f(7).

f(7) = 72 +2*7 +24

f(7) = 49 +14 +24

f(7) = 87

The value of f(7) is 84

Problem 2;  f(x) = x2 +5x +20 find the f(8).

Solution :

Given function of f(x) 

f(x) = x2 +5x +20 find the f(8).

Plug x=8

f(8) = 82 +5*8 +20

f(8) = 64 +40 +20

f(8) = 124.

The value of f(8) is 124

 

Review on algebraic function problems:

 

Problem 1;  s(y) = 10 and r(y) = 4   find the addition function of (s+r)(y)

solution:

 In the given function r(y) and s(y) values are given we need to find the (s+ r)(y).

Using the rules of the functions (s + r)(y) = s (y)+ r(y).

(s + r)(y) = s(y)+ r(y), here s(y) and r(y) value is given

(s + r)(y) =10+4.

(s + r)(y) =14.

Problem 2: (S-r)(x). If the value of r(x)=8 and s(x) =12.

Solution:

 In the given function s(x) and r(x) values are given we need to find the (s-r)(x).

Using the rules of the function (s - r)(x) = s (x) - r(x), here s(x) and r(x) value is given

(s - r)(x) =8-12.

(s- r)(x) =-4.

Review on Multiplication and division problems in algebraic function:

Problem 3:  Find the value of (s . r)(x). if the value of s(x)=15 and r(x) = 10.

Solution:

In the given function s(x) and r(x) values are given we need to find the (s.r)(x).

Using the rules of the function (s.r)(x) = s(x).r(x), here s(x) and r(x) value is given

(s.r)(x) =15*10.

(s.r)(x) =150

 

Problem 4:  Find the value of `(s/r)` (x). if the value of s(x)=40 and r(x) =10.

Solution:

 In the given function s(x) and r(x) values are given we need to find the` (s/r)`   (x).

Using the rules of the function `(s/r)` (x) = `(s(x))/(s(x))` , 40 and 10 are  s(x) and r(x) `(s(x))/(r(x))` value is given

`(s/r)` (x) =`40/10`

`(s/r)` (x) =4